
Background-Foreground Frame Classification

CS771A: Machine Learning Techniques
Project Report

Advisor: Prof. Harish Karnick

Akhilesh Maurya Deepak Kumar Jay Pandya Rahul Mehra
(12066) (12228) (12319) (12537)

Group-21

April 10, 2016

Abstract

A large number of cameras are installed at the gate of IIT Kanpur for the purpose
of video surveillance. All the video data is stored and hence adds up to the disk space
used for storage. All the video frames which are recorded during the non-peak hours
have very less number of vehicles in them and most of the frames have none. There is
a need to remove these background frames from the videos so that we can reduce the
overhead of storing the unwanted frames. For this we propose our methods for removal
of background frames from the given surveillance video.

1 Introduction

In this project we present three methods to do background-foreground classification of the frames
of the video. One is based on simple frame differencing in the video. Another uses CNN to extract
the features from any frame and trains a model for the classification. The last method uses creation
of a code-book model for the classification of the pixels.

2 Given Input Data

We were provided with 10 video clips. 3 with lengths 15min and the rest had length 1min. All
these clips were of the morning period and hence were very clear and had nice intensity throughout
the length of the video. We were also provided with the labelled bounding boxes around the objects
within each frame of the video. This data was highly ambiguous as one of the larger videos with
length 15min had lot of frames which had no bounding box around the moving vehicles. Also
there was lot of difference in the labelling done by different people. Also two of the videos had
two security officers roaming throughout the video which made our classification task a bit difficult.
Hence we didn’t use this data and labelled the frames on our own. We labelled the given video
data as background or foreground and trained our models based on that.

1

3 Frame-Differencing

Extraction of moving object is an important step in the system of video surveillance, traffic moni-
toring, human tracking and other applications
Algorithm of the frame differencing:

A motion detection algorithm begins with the segmentation part where foreground or moving
objects are segmented from the background [1]. The simplest way to implement this is to take an
image as background and take the frames obtained at the time t, denoted by I(t) to compare with
the background image denoted by B. Before this the images are converted into grayscale rather
than colored. Here using simple arithmetic calculations, we can segment out the objects simply
by using image subtraction technique of computer vision meaning for each pixels in I(t), take the
pixel value denoted by P[I(t)] and subtract it with the corresponding pixels at the same position on
the background image denoted as P[B].

In mathematical equation, it is written as:

P [F (t)] = P [I(t)]− P [B] (1)

The background is assumed to be the frame at time t. This difference image would only show some
intensity for the pixel locations which have changed in the two frames as shown in Fig1. Though
we have seemingly removed the background, this approach will only work for cases where all
foreground pixels are moving and all background pixels are static.A threshold ”Threshold” is put
on this difference image to improve the subtraction.

|P [F (t)]− P [F (t+ 1)]| > Threshold (2)

This means that the difference image’s pixels’ intensities are ’thresholded’ or filtered on the basis
of value of Threshold. The accuracy of this approach is dependent on speed of movement in the
scene. Faster movements may require higher thresholds.

We used the Mean and Median of the subtracted image as elements of the feature vector. Feature
vectors were obtained for each frame and used to train Perceptron/SVM using the manually labeled
data. The perceptron/SVM calculated the separating conditions for the feature vector thereby giv-
ing us a learned threshold for separating background and foreground frames.

Problems Faced:

• Static object can’t be recognised The feature vector of pixels having static object is zero so
these frames are recognised as background frames.Also very slowly moving object are not
classified upto appreciable accuracy.Frames get detected once they start moving.

Improvement in accuracy:

• Frame differencing with overall average frame gives feature vector which gives better accu-
racy for our video data.

• For videos of longer length we can take hourly image average and then taking frame differ-
encing with this average.

2

Figure 1: Frame Differencing

4 CNN Based Feature Extraction

In this method the choice of background is the actual background having no moving/still object in
them. We do so because this method takes no consideration to the previous frames in any sense.
Each frame of image is fed to the CNN for feature extraction. We do not incorporate the details
and information about the previous frame or future frame. So to evaluate our method we used the
data from video clips having no vehicles standing in them. Since we had already labeled them as
background frame in the previous method.

We use pre-trained caffe model of BVLC GoogLeNet[Insert Reference] for our purpose [3]. We
treat this model as a black box that gives us features to train another model for classification. The
CNN has 22 layers in it as shown in Fig 2. The actual caffe model is trained to classify the images
into the 1000 ILSVRC 2014 classes (the dataset on which it is trained). But for our purpose we use
the ’pool5/7x7 s1’ layer of the caffemodel to extract our features. This layer is of length 1024. We
use these values as our features. We pass each frame through the CNN and create the feature vector

Figure 2: GoogLeNet Layer Structure

of length 1024 for each frame. Now we train a LinearSVM over these feature vectors received and
obtain a classifier for our need. We get a very fast feature extraction with this method and also

3

the classification is very fast. We can do classification of frames at very high speed. Figure 3
summarizes our method.

Figure 3: Frame Classification at Test time

Problems Faced:

• Slow local feature Extraction The extraction of 1024 sized feature vector on local machine
was extremely slow with extraction speed of 0.16 frames per second. Hence to solve this
problem we rented a ubuntu 14.04 instance on Amazon Web Service with NVIDIA GPU
support. This increased the speed of our feature extraction and made it to around 11 frames
per second. Which is still extremely slow and is not practical for real time classification of
images.

• Slow remote AWS feature Extraction To solve the speed issue we thought of manipulating
the frame itself and resizing it. On resizing the frames we found that most of the motion and
object features were captured even in the resized image. We resized the image to 1/5th of its
original size. On this resized image, the speed changed to 220 frames per second which is
extremely fast given that most of our videos had only 25fps video speed. This is a very huge
increase as shown in 4.

AWS Machine Specification

• OS - Ubuntu 14.04

• Memory - 15GB

• GPU - 1x NVIDIA GRID (Kepler G104) + 8 x hardware hyperthreads from Intel Xeon E5-
2670

4

Figure 4: Feature extraction speed on various platforms

5 Code-Book Creation

CodeBook is a method for creation of a model for background. Using the given frames we try to
estimate if the current pixel value at a given position has occured till now in the video [2]. There is
an underlying assumption that pixels corresponding to background region will occur periodically
in video. The method tries to use this to model the background. The algorithms evaluates the color
and brightness distortion for the pixels of the image to create the codewords to be added to the
code-book. A few nice things about this method are that it can cope up with illumination changes.
Also the training doesn’t require labeled data. This is an algorithm for fast background modeling
and background subtraction.

Figure 5: CodeBook depiction

5

For a N frame long video a code book is created of length L codewords for each pixel. Each
pixel has a different code-book size based on its sample variation. Each codewords ci, i = 1..L,
consists of an RGB vector vi = (R̄i, Ḡi, B̄i) and a 6-tuple auxi = 〈Ǐi, Îi, fi, λi, pi, qi〉.

5.1 Algorithm for Codebook construction

1. L← 0, C ← ∅

2. for t = 1 to N do

(a) xt = (R,G,B), I ← R +G+B

(b) Find the codeword cm in C = ci|1 ≤ i ≤ L matching to xt based on two conditions
i. colordist(xt, vm) ≤ ε1

ii. brightness(I, 〈Ǐ , Î〉) = true

(c) If C 6= ∅ or there is no match, then L← L+ 1. Create a new cL by setting
i. vL ← (R,G,B)

ii. auxL ← 〈I, I, 1, t− 1, t, t〉
(d) Otherwise update the matched codeword cm, consisting of vm = (Rm, Gm, Bm) and

auxm = 〈Ǐ , Î , fm, λm, pm, qm〉, by setting
i. vm ← (fmRm+R

fm+1
, fmGm+G

fm+1
, fmBm+B

fm+1
)

ii. auxm ← 〈min{I, Ǐm},max{I, Îm}, fm + 1,max{λm, t− qm}, pm, t〉.
end for

3. For each codeword ci, i = 1..L, wrap around λi by setting λi ← max{λi, (N − qi + pi− 1)}.

Temporal filtering
M = {cm|cm ε C Λ λm ≤ TM}

5.2 Algorithm for Background Subtraction

1. x = (R,G,B), I ← R +G+B

2. For all codewords in M after temporal filtering, find the codeword cm match-
ing to x based on two conditions:

(a) colordist(x, vm) ≤ ε2

(b) brightness(I, 〈Ǐ , Î〉) = true

BGS(x) =

{
foreground if there is no match
background otherwise

6

5.3 Problems faced

Code written in python for codebook was very slow. Even the optimizations of
reducing the size using random points instead of all the points didn’t speed the
process much. It seemed promising. But the training to create the code-book was
extremely memory intensive and we were not able to do that.

6 Results

We got extremely good results with our methods. Although we were not able
to go above 90% we got all our working methods to score above 75%. Frame
differencing worked much better than expected and gave very precise classification
of frames. An attached video along with this report shows the result. The CNN
based method for extraction also performed extremely well. This only means that
the features extracted from the ’pool5/7x7 s1’ layer captured the features of the
image properly. We faced lot of problems with caffe installation on AWS but it
was worth the accuracy and speed that we obtained. We were not able to prepare
the model for code-words.

The following are the precision obtained for various algorithms:

Method Used Performance
CNN based feature Extraction + SVM Classification 85%

Frame Differencing (with previous frame) 76%
Frame Differencing (with video avg frame) 83%

7

References

[1] D Stalin Alex and AMITABH WAHI. Bsfd: Background subtraction frame
difference algorithm for moving object detection and extraction. Journal of
Theoretical & Applied Information Technology, 60(3), 2014.

[2] Kyungnam Kim, Thanarat H Chalidabhongse, David Harwood, and Larry
Davis. Real-time foreground–background segmentation using codebook
model. Real-time imaging, 11(3):172–185, 2005.

[3] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed,
Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Ra-
binovich. Going deeper with convolutions. In Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition, pages 1–9, 2015.

8

	Introduction
	Given Input Data
	Frame-Differencing
	CNN Based Feature Extraction
	Code-Book Creation
	Algorithm for Codebook construction
	Algorithm for Background Subtraction
	Problems faced

	Results

